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The general problem of finite differencing the diffusion equation on a two-dimensional 
Lagrangian hydrodynamic mesh is discussed and a set of general criteria is developed. A 
detailed description is given of a particular difference scheme satisfying these criteria. A 
numerical test case is presented. 

To model radiation transport and electron and ion thermal conduction, we want to 
difference an equation of the form 

$v. (DVf) (1) 

on a Lagrangian hydrodynamic mesh. D (the diffusion coefficient) is a given positive 
function of space and time. f is the energy density and is also positive. Because our 
smallest practical time step is often much longer than the characteristic relaxation 
time (r = l’/D where 1 is the distance between mesh points), we must difference (1) 
fully implicitly. 

In general one can use the partially implicit scheme 

f f” n+l_ 

At 
=V(DV(af”+‘+ (1 -a)f”)), 

where 0 < a Q 1. If I is the largest (positive) eigenvalue of the linear operator, 
-VDV, then r z l/A and if f” is the corresponding eigenvector, then 

f 
n+1 

-f” 
At 

= -A(@+’ + (1 - a)f”) + Y,, 

where YB contains the boundary conditions. Thus 

f R = p”fo + (1 - p”) Y&, 

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore 
Laboratory under Contract W-7405ENG-48. 
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where 

P= 
1 - (&)(I - a)A 

1 + (At) a2 ’ 

This is to be compared with the exact solution 

f(n Al) = a”f” + (1 - 6”) Y,/A, 

where o = eeAtAr). 
If f < a < 1, then (p( < 1 for all At > 0 and so stability is assured. However, the 

best choice of a is that which makes p = u, 

a = 1 -A(A) - edACAt) 
l(At)(e- l(Af) _ 1) * 

For (At)l-+O, a-t;, and for (At)A --f co, a + 1. So for (At) 9 T we choose a = 1. 
Note that unless we choose a > 1 - [ (dt);l] - ‘, we will have p < 0 and the numerical 
solution will oscillate instead of the f” component decreasing monotonically as the 
exact solution does. Furthermore if (At)2 % 1 and a is close to f instead of being 
close to 1, then the f” component will decrease very slowly (as [(l - a)/a]” instead 
of dying out almost completely in one time step as it should. 

Therefore we have, 

f  
(n+U-fn 

(4 
= V . (D V”“+ I’), (2) 

where f” is f after the nth time step. Fully implicit differencing has the virtue that 
when (At) 9 r the left side of (2) becomes negligible and we get 

V . (D Vf’” + I)) = 0, 

i.e., we get the correct steady-state solution. 
The next step is to difference the diffusion operator 

V . (D Vf ). 

We assume cylindrical symmetry so the basic coordinates are R and Z and the mesh 
consists of a set of points 

@ K.L 1 ‘K,Lh 

where 

K = 1, 2,..., K MAX 
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and 

L = 1, 2,..., L MAX 

Each quadrilateral zone is labeled by the largest (K, L) pair of its four corners. Thus, 
a typical zone whose indices are (K, L) looks like 

In most of our applications f and D are zone centered quantities. 
The zone centers are given by 

where i? and .? are chosen so that if the energy density f varies linearly through the 
zone, then f (R, 2) V,,, is the energy in the zone. Thus 

where V K,L = (v,+, R dR dZ. So we have 

s (Z - &,)R dR dZ = 0, 
V&L 

and 

5 (R - R&R dR dZ = 0. 
“K,L 

Our zone centered energy density is given by 

.fi,, =f(R,Z) It~,,,f,,y 

We want a finite-difference operator (a matrix A) which will approximate the 
diffusion operator, i.e., 

Af tz V . (DV)jI 

Then Eq. (2) becomes 

f 
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(I-(@A)f’“f”=f”. 

What properties do we wish the matrix operator A to have? 

(3) 

(1) Let @K&T Z,,,) be a given mesh and f(R, Z) some energy density 
distribution. Then let fKSL =f(R”,,L, .$?,,,) and expand fK,,L, in a Taylor series about 
a given point RKS,, z,,,. If we neglect third- and higher-order terms in the Taylor 
series, then we require to second order in the Taylor series that 

\‘ A 
K’.L ’ 

~K,LMK’,L%&‘,L - v ’ PV)fl,RXL&) = 0. 

This is what we mean when we say Af approximates V - (D Vf). 
(2) A must be non-positive definite, i.e., for any vector x, 

(x, Ax) < 0 

where 

tx, Y) = r vK,LxK,L YK,L 9 

and ‘K,L is the volume of zone (K, L). Clearly the diffusion operator has this 
property for if f is any function of space, 

=- 5 R dR dZ D(Vf )” < 0. 

We put 

I RdRdZV.(jDVf)=O 

because we assume f = 0 or dS. Vf = 0 on the boundary of the problem. We 
sometimes have the condition f =f, # 0 on the boundary of the problem. However, 
when Eq. (3) is finite differenced, the terms in (Af)K,L that involve fs get put on the 
right-hand side of the equation (since fB is known) and so the remaining matrix A on 
the left-hand side of Eq. (3) which operates only on the vector of unknowns is the 
same as if f = 0 on the boundary. Boundary conditions will be discussed in detail 
later. We require that A be non-positive definite because if it were not, it would have 
some positive eigenvalues. Let V be an eigenvector with positive eigenvalue A. Then if 

f” = V we have (from Eq. (3)) 

(Z- (dtp)f”+’ =f” 
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f(n+‘) = (1 - (&);l)-‘f” 

which blows up if dt = 1-l > 0. Unless A is non-positive definite, there will always be 
a time step At > 0 for which the whole scheme blows up. Therefore numerical 
stability requires A to be non-positive definite, which implies for any At > 0, M = 
1- (At)A is positive definite, and (x, Mx) 2 (x, x) for any x. 

(3) We require A to be symmetric, i.e., 

(x, AY) = (Ax, Y). 

The diffusion operator has this property, for 

J R dR dZ gV . (D Vf) = -j R dR dZ D(Vf) . (Vg) 

= RdRdZjV.(DVg). 
J 

For the diffusion equation this property gives us energy conservation for if g = 1 
everywhere, then 

J dE 
$RdRdZ=$==jRdRdZgV.(DVf) 

= RdRdZJV.(DVg)=O, J since Vg = 0. 

Similarly if we choose A to be symmetric, our finite-difference scheme will conserve 
energy exactly for if g,,, = 1, for all (K, L), then 

=(dt) x ~,,,Af~,f’)=(dt)(g,Af’“+“) 

=(At);;,f’“C”)=O, 

since Ag = 0. It is shown below (see Eq. (6a)) that property (1) implies Ag = 0 if g is 
constant. 

In deriving dEtotaJdt = 0, we assumed that Vf = 0 on the boundary. If this is not 
the case, then we obtain dEtota Jdt = I dS . D Vf = rate at which energy is escaping 
from the problem. Analogously, in the finite-difference case, if we allow energy to 
escape, then Ag will be #O on the boundary of the problem and (dt)(Ag, f (“+ l)) will 
give the energy that has escaped during the current time step. 



380 DAVlD S. KERSHAW 

We have shown that the symmetry of A is sufficient but not necessary for global 
energy conservation. Let us now look at local energy conservation. Using the 
property Ag = 0 if g is a constant, we can rewrite (Af),,L as 

VK,L(AflK,L = -Y VK,LAK,L;K’,L’uL,L -fK.L:,r), 
K’,L ’ 

where the sum is over the eight nearest neighbors of (J&L). 

VK,LAK,L;K,,L,(fK,,L, -fK,L) has a simple physical interpretation as the energy flux 
from zone (K’, L’) into zone (K, L). The symmetry of the matrix A assures us that 
the energy flux from zone (K’, L’) into zone (K, L) is equal to minus the energy flux 
from zone (K, L) into zone (K’, L’). Combining this with Eq. (3) we have 

VK,LW2L? -fi,t) = WI x VK,LAK,L:K~,L’uK’,L’ -f,,,>. 
K',L' 

Thus the change in the energy in zone (K, L) during the nth time step is just equal to 
the sum of the energy fluxes coming into the zone from each of its eight neighbors 
and energy is locally conserved. 

(4) We require a locality condition that A be a nine-point difference operator 
(we shall show that this is the smallest number of points to which one can couple and 
still satisfy property 1). In the special case where the K and L lines of the mesh are 
orthogonal we require that A reduce to the standard five-point scheme which is 
widely quoted in the literature. In this standard five-point scheme A = A, + A, and 
A, (A,) is just the one-dimensional three-point diffusion operator along a K (L) line. 
This five-point scheme has been extensively tested and we thus tie ourselves to a 
successful tradition in the special case of an orthogonal mesh. We note in passing 
that the standard five-point scheme on an orthogonal mesh satisfies all of 
requirements 1 through 5. 

(5) We would like A to satisfy i # j implies A, > 0. Then A4 = (I- (dt)A) is a 
positive definite, symmetric “M matrix” or Stieltjes matrix, i.e., 

Mii > 0 and Mij < 0, i# j. 

This is desirable because f(“) is an energy density and so f$‘i > 0. From Eq. (3), 

ot+l) - ” MY- -f, 

and it is shown in Ref. [ 1 ] that (J” 2 0) =S Cf(‘+i) > 0) if and only if M is an “M 
matrix.” Thus unless A is an “M matrix” we will be plagued with occasional negative 
energy densities in certain zones. 

To sum up, our basic requirements are: 

(1) Af -+ V . (D Vf) as the mesh size goes to zero, i.e., A approximates V + DV. 

(2) A is non-positive definite. This gives us numerical stability. 
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(3) A is symmetric. This gives us energy conservation. 

(4) When the mesh is orthogonal, A becomes the standard five-point scheme. 
This assures us that in the special case of an orthogonal mesh we have an extensively 
tried and tested tradition working for us. A is a nine-point coupling scheme. This 
makes M = Z - (&)A as sparse as possible (and therefore Mf(“+‘) =f(“) as easy to 
solve as possible) while still satisfying condition 1. 

(5) A is an “M matrix.” This assures us that energy densities stay positive. 

We now show that on a general Lagrangian mesh a nine-point coupling scheme is 
the smallest possible, and that conditions 1 and 5 are incompatible. 

Let our nine-point scheme be 

A superscript K, L on the a’s and /3’s has been suppressed. 
In the limit as the zone size goes to zero we have 

f K+I,L =fK.L + CR;,.,,, -fiK,Lg 1 K,L 

+ (zK+~,L-z~,Ll~ 
K,L 

+ 1/2(RK+,,L -RK.,,'~ 
K,L 

+ @K+l,L -RK,L)(zK+,,L -2,.,& 
KJ 

+ WOK,,,, - z,.,,I-g 9 
K,L 

(4) 

and similar equations for f,- l,L ,..., f,- ,,L+l. Condition 1 requires that substituting 
Eq. (5) into Eq. (4) should give 
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This gives six equations for the a’s and p’s. Namely, 

(6b) 

D = l/2 x /I, ,,L ,(RK ,,L, - R;+,)‘, (64 
(K',L') 

(K',L') 

D = l/2 x &‘,J’(& - &)‘, (6f) 
(K’,L’) 

where the sum in (6a) through (6f) is over the eight neighbors of (K, L). 
Clearly, in general we cannot satisfy six equations with five unknowns (i.e., with a 

five-point scheme where j? -P -P -P K+I,L+I - K-l&-l - K+I,L-I - - 0) so in order K--I,Ltl - 
to preserve symmetry we must go to a nine-point scheme to difference the diffusion 
operator on an arbitrary quadrilateral mesh. Condition 5 requires that 

and 

for all eight neighbors (K’, I,‘) of (K, L). However, there are many meshes such that 
@Kc,Lf - RK,L)(zKc,Lf - zK,L) > 0 for all eight neighbors (K’, L’). But this, together 
with (6e) and (7), implies &K,,L,j = 0 for all eight neighbors and clearly then (6b), 
(6c), (6d), and (6f) cannot be satisfied. Therefore on a general quadrilateral mesh 
conditions 1 and 5 are incompatible. A simple example of a mesh which gives 
(R",',L'--K,)(zK',L'- z,,J > 0 for all eight neighbors (K’, L’) is 
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Thus for a general Lagrangian hydrodynamic mesh we must use at least a nine- 
point difference scheme and we cannot help violating condition 5. Occasional 
negative values for the energy density are unavoidable but the numerical stability 
condition 2 assures us that they will be transient and small which is indeed found to 
be the case in practice. Note also that the above argument applies equally well to 
triangular meshes. If we regard (K, L) as labelling points in a triangular mesh, and 
c CK,.L ,) as a sum over the six neighbors of (K, L) in this mesh, then it is again easy 
to find meshes for which 

(RK’,L’ - &,,PK w  - Zd > 0 

for all neighbors. A simple example is the grid: 

IK. L+ 1) 
IK+l.L+l) 

(K + 1. L) 
R IK - 1, Ll 

@ 

IK. Lb 

IK-l,L-11 IK, L l! 

To difference the diffusion operator so as to satisfy 1 through 4 we imagine R and 
Z to be functions of continuous variables K and L. Then a simple exercise in partial 
derivatives shows that 

where 

j=det 
-- 

R,= ) and RL=(i). 0-9 
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j is the Jacobian of the transformation from (R, Z) to (K, L) and is just the area of 
the Lagrangian cell. 

To difference Eq. (8) we use the variational method [2]. For our problem from 
Eq. (8) it follows that 

j- R dR dZfv . (D Vf) = -j- R dR dZ D(Vf )’ 

=-/dKdL [J~(It&-&&)f]‘. (9) 

The finite difference analogue of (9) is 

where the two matrices B, and B, will be specified shortly. Then if we take (10) and 
perform the finite-difference analogue of integration by parts (i.e., shift the indices 
appropriately), then (10) can be written in the form 

- x Pflk~ = + x f,,LW)K,L VK,LY (11) 
(K,L) KJ 

'K,L =Rj 1K.L = zone volume/(27r), 

where A is the matrix we seek. Equation (11) assures us that Gauss’ theorem will 
apply to our finite-difference analogue just as it does to the exact diffusion operator 
and therefore the proofs we gave to show that conditions 2 and 3 were satisfied by 
the exact operator, V . (D Vf), will apply equally well to our finite-difference 
operator (Af). Therefore we are assured that A will be non-positive definite and 
symmetric. 

It remains only to decide on the form of (Bf) in Eq. (11). Actually we shall use 

RdRdZjV(DVf-)%-$ x i P%,L 

(K,L) i=l 

= + 1 ~K,LW)K,L vK,L* 
(K,L) 

The above remarks apply equally well to this slightly generalized form. Condition 1 
will be satisfied if 

(B&L=: R g-RKj$ 
L ak (13) 

and R,, R, become continuous functions of K, L as the mesh size goes to zero.’ 

’ The use of coordinate transformations from physical to logical space as an aid in constructing 
difference equations in Lagrangian meshes has been discussed by W. D. Schulz (“Methods in 
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We break (Bf) into two parts 

@f)K,L =&,LRL - %,LRK, 
where 

and 

9 K,L = 
-- (14) 

Clearly 3’ and LP are face centered quantities and we difference (14) as 

where C,,, = (DR/j)“* suitably averaged between zones K, L and K + 1, L. We 
prefer to use Zi,L = (RK,L +RK.L--L)/((~K,L/DK,L) + (jK+I,L/DK+I,~)) but any 
method of averaging can be used without upsetting our conditions 1 through 4. 

if7,,L=AK,L(&,L+I -fK,Lh 

where A,,, is (DR/j)“* suitably averaged between zones K, L and K, L + 1. 
In diagrams: 

(15b) 

R, and R, we differenced as 

Computation Physics,” Vol. 3, pps. 145, Academic Press, New York, 1964) and Stein ef a/. (Cornput. 
Methods Appl. Mech. Eng. 11 (1977), 57). Note that by writing (By), L in terms of partial derivatives 
with respect to K and L and then differencing this expression, we tacitly assume that R(K,L) and it 
derivatives R, and R, are continuous functions of K and L. In order for Af+ V(D Vf) as the mesh size 
goes to zero, R, and R, must become continuous functions of (K/KMAX) and (L/LMAX). For a finite 
mesh, R, and R, must be smoothly varying with K and L in order for A to be a good approximation to 
V . D Vf: This restriction may be removed by simply writing (Bf)K,L = \/ov, Vf and then obtaining a 
finite-difference expression for B’ by fitting f  = KfR + Zfz +fO to the three zonal values fx,L, f,, , .r,, 
f .K,L + , , and proceeding similarly for B *, B3, and B4. This fitting could be done, e.g., by requiring that 
j R dR dZ (RfR + Zf, +fJ = V,,,fK.L V,,L for each of the three zones. 
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where R,,, = (R,.,, Z,,,). This choice for R, and R, ensures that if we zone up a 
sphere as concentric equilateral polygons, our diffusion routine will still consider it to 
be an orthogonal mesh, i.e., 

will hold. The difference of these two terms we call B’ 

(B’f),,, =~,~R.)K,L - %L&)x.L (16a) 

and in diagram form 

Clearly there are three other equally plausible choices for the zone centered 
quantity (By),,, , namely, 

t 

(16~) 
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(164 

By symmetry (under 90” rotations about zone (K, L)) all four B’s are equally likely 
so we take 

I RdRdZfV.(DJj+-4 x t (By);,, 
(K,L) i=l 

= + x fK,LWK,L VK,L. (12) (KJ.) 
If follows that 

VA = -l/4 $ (B’)T . (B’), 
*T* 

and in this form the symmetry and non-positive definiteness of the matrix VA is 
obvious. This defines the matrix A and substituting Eqs. (16) into (12) and equating 
coefficients of fKVL f, ,,L,, one finds 

VK,LA(K,L,,,K,L, = -"(K,L) -'(KG1.L) -'+K,L, -hK,L-1, 

+ qp' 2 (K,L) +P:K,L) -dK,Lb -dK.L,h VW 

V A K.L (K,L),(K+l,L) = '(K,L) -a l@' 2 (K,L)+P(K+1,L,-P:K+I,L) --P4 CK,L,h (17b) 

VK,L~(K,L,,(K,L+ l)= A(K,L, -i@t,L, +P:K,L+I) -P:,L, -P;K,L+d (17c) 

VK,,L~(K,L,(K+~,L+~, = - b@:K+1.L) +dK,L+d (174 

VK,LA~K,L~,~K-l.L+l,=b@:K--l,L~ +dK,L+d tl7e) 

where 

u (K,L) = ('?K,L,)2 (@d&L + @L):,+,,L)/~, 

A. (K.L) = VW,LJ*(@K)~,~. + (RK)i,L+ 1)/23 

P:K.Lt =z<K.L~A~K,L~CK,L~ 
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2 
P(K,L) = Z,K- 1.L) A c (K,L-I) K.-L’ 

PfK,L) = E(K- 1.L) A c (K,L) K,L, 

L&L) =C(K,L)A(K.L-l)cR.L, 

and 

c K,,c = &),,L . (RL)K.L. 

Since VA is symmetric 

VKtL<A (K',L'),(K,L) = VK.LA(K.LMK~.LO~ (170 

and all elements of A not defined by Eqs. (17a) through (17f) are zero. 
In the case of an orthogonal mesh R, . R,=O, and sop’=pz=p3=p4=0, and 

only the CJ and 1 terms remain, but Eq. (17) with just the u and 1 terms is nothing but 
the standard five-point approximation that is widely used. Note that only the p’s 
involve square roots; c and 2 do not. Thus condition 4 is satisfied. 

We note in passing that the square roots in (15a) and (15b) seem to be necessary if 
conditions 1 through 4 are to be satisfied. In particular, uK,L depends only on D,,, 
and D,, ,,L and L,,, depends only on D,,, and D,+,+ i. This is a basic feature of the 
standard five-point scheme and is only achieved because we factored D into 
D112 * D1j2 and differenced each square root separately. Any scheme which does not 
involve square roots of D in this way will inevitably produce a uK,L which depends on 
D K,L’ D,,,,,, D,,,,,, DK,L-,, D,,,,,,,, and DK+,,L-,, a highly non-local and 
therefore undesirable kind of differencing. For example, if we have a slot filled with 
large D material embedded in a slab of material with very small D and if the slot is 
two zones wide and many zones long and the zoning is orthogonal, then our scheme 
will give the proper diffusion rate along the slot, whereas any scheme where uK,L was 
an average of the six neighboring D's would get too slow a diffusion rate along the 
slot. 

In our application the diffusion coefficient, D, may often jump by many orders of 
magnitude from one row of zones to the next due to changes in materials. This is 
particularly true in realistic problems where limitations of computer memory and 
speed often restrict one to rather coarse zoning. In this case if u~,~+ 1 depends on 
D K.L and DKil,L and DK,L?DK,L+lT then flow along the (L + 1)st line well be 
greatly (and incorrectly enhanced) by the much larger D on the Lth line. 

Our diffusion problems have two types of boundary conditions 

dS.Vf=O 

or “no escape” boundaries, and 

or “escape” boundaries where a known vacuum energy density fs is given. 
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We manage to allow irregular-shaped material boundaries while still having a 
rectangular logical mesh by having two types of zones, physical zones that are part of 
the problem and vacuum zones. The physical zones are completely surrounded by 
vacuum zones. 

Our basic equation is (3) 

fI2yJ’ - WMf’” + 9(K,L) = f&&L) * (3) 

The basic building blocks of A are ZK,L(R,),,, , ZK,,(R,),+ ,,L, LI~,~(R~)~,~, and 
~m&)w +, (see Eqs. (16) and (17)). ZK,L connects zone (K,L) with zone 
(K + LL), and A,,, connects zone (K, L) with zone (K, L + 1). The boundary 
conditions are incorporated by the following set of rules: 

(1) If (K, L) and (K + 1,L) are both physical zones use ZK,L(R,),,, and 

~K,L(RL)K+ 1.L as described above. 

(2) If (K, L) and (K + 1, L) are both vacuum zones, Z,,, = 0. 

(3) If (K, L) is a physical zone and (K + 1, L) is a vacuum zone and the face 
separating the two zones has “no escape” (n^ + Vf = 0) boundary conditions across it, 
use .ZKqL = 0. Also in Eqs. (16a) and (16d), (R,),,, is replaced by 

W . RAd 

where n^ is the unit normal to the vacuum surface. 

(4) If (K, L) is a vacuum zone and (K + 1, L) is a physical zone and 
n^ . Vf = 0 across the boundary, use Z:,., = 0. Also in Eqs. (16b) and (16c), with 
K --) (K + l), (R,),, ,,L is replaced by 

n^(n^ . (Rd, + , ,A 

(5) If (K, L) is a physical zone and (K + 1, L) is a vacuum zone and the face 
separating them has an “escape” df=f,) boundary condition across it, use 

&,L(RdK,L and -&,,@J,+ 1,L as described above except that ZK,L is now (DRlj)“’ 
suitably averaged between zone K, L and the vacuum and (RL)K+I,L is now given by 
(RL)X+I,L =R,,,-RRK,L--I instead of (15d), since RK+,,= and R,+,,,-, may not 
exist. Also in Eqs. (16a) and (16d), (R,),,, is replaced by 

where n^ is the unit normal to the vacuum surface. Then whenever a term with f, = 
f (K+ 1 ,L) (i.e., 44 A X,L,CK+ l,LjfB) turns up on the left-hand side of Eq. (3), just move 
it to the right-hand side since f, is known. In our application Z;K,L is averaged so that 
if fi . Vf is constant, f extrapolates to f, at two-thirds of a mean free path outside the 
surface (Milne boundary condition). 

(6) If (K, L) is a vacuum zone and (K + 1, L) is a physical zone and the 
interface has “escape” boundary conditions, use ZK,,(R,),~, and CK~,(R,),+,,L as 
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described above, except that z’K.L is now averaged between zone K + 1, L and the 
vacuum and (R,),,, = R,,, -R,,,-, instead of (15d). Also in Eqs. (16b) and (16c), 
with K + (K + l), (R& + ,,L is replaced by 

W . (&A,+ d 

Then whenever a term withf, =AK,L) (i.e., -(&)A(,+ l,L)(K,L&,) turns up on the left- 
hand side of Eq. (3), just move it to the right-hand side. 

A completely analogous set of rules applies to the Ax,L. 
We leave it to the reader to convince himself that this prescription leaves 

conditions 1 through 4 satisfied. This is because we have introduced the boundary 
conditions as modifications of the B”s in our variational equation (12) and therefore 
we know as before that since it is derived from a variational principle, our modified A 
matrix is still non-positive definite and symmetric. 

In our applications we use this difference scheme to determine A, and the ICCG 
method [ 31 is used to solve the linear system, 

(I-(dt)A)f’“+‘)=f”, 

at each time step. 

NUMERICAL TEST 

This difference scheme was tested by simulating diffusion through a mesh with 
highly skewed zones. The mesh is shown in Fig. 1. K goes from 1 to 78 and L from 1 
to 76. R goes from 0. at L = 1 to 1. at L = 76 and Z goes from 0. at (K, L) = (2, 1) 
to 1. at (77, 1). We solve 

$ = V(D . Vf), 

where D is constant over the whole mesh and does not change with time. The 
boundary conditions aref= 0 in the column of zones between K = 1 and K = 2, f = 8 
in the column of zones between K = 77 and K = 78, and n’. Vf = 0 along the L = 1 
and L = 76 lines, where n is the direction normal to the boundary surface. Initially 
f = 0 everywhere between the source and sink and we watch the diffusion front move 
out of the source and spread toward the sink until the steady state, 

f=8Z, 

is reached. This is just a one-dimensional problem and f should be a function of Z 
only at all times. Will the highly distorted mesh distort the isotherms away from 
vertical straight lines? 
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Figures 2 and 3 show isotherms off at an intermediate time (Fig. 2) and after 
steady state is reached (Fig. 3). The isotherms are 

A -f= 0.1, 

B -f = 0.5, 

c-j-=2, 

D-f=4, 

E-f=& 

and the background is the K = 1, 2, 39, 77, and 78 lines and the L = 1 and 76 lines. 
In this problem the time step was constrained so that 

x <f2L -f;,,>’ x (f&J < 0.01 
K.L I 

for all successive time steps n and n + 1. Thus at the start of the problem At & the 
explicit time step = l/&,x, where L,,, is the largest eigenvalue of (-V DV) z 
D/(AZ)‘, where AZ is the average zone width. As the problem proceeds, the diffusion 
front, which was initially one zone wide, gets less and less steep and as it does so the 
large L components in f die out and At gets larger and larger until steady state is 
reached and At + co. 

The long wavelength noise (deviations from straight vertical lines) apparent in 
Fig. 2 in contours A and B and in Fig. 3 in contour D is due to the sharp bends in 
the K lines. As is pointed out in footnote 1 our difference scheme is most accurate 
when R, and R, vary smoothly with K and L. Since in this test problem R, and R, 
change abruptly when L goes from just above the angles in the K lines to just below 
them we can expect some distortion in the vicinity of these L values and that is 
indeed where the distortion occurs. Decreasing the time step further has no effect on 
the distortions. 

The same problem was also run for the diffusion equation in f to the fourth power, 

which was differenced in the form 

4(f"13 df 
,+1-f") 

(4 
= V 4D(f “)3 Vf n+ ', 

with f 4 = 0 between K = 1 and 2 and f 4 = 8 between K = 77 and 78. Here the fact 
that (T~,~ depends only on (4D(f”)3),,L and (4D(f”)3) K + 1, L and is not averaged 
over other more distant zones gives a better approximation to the analytic operator 
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sincef3 is falling steeply through the diffusion front. Isocontours forf 4 = 0.1, 0.5, 2., 
4., and 6. at the same times were indistinguishable in Figs. 2 and 3. 

Our difference scheme is able to simulate diffusion through a highly distorted mesh 
without the diffusion front taking on the shape of the mesh distortions. 
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